Math 55 Discussion problems 23 Feb

1. Prove that $1 \cdot 1!+2 \cdot 2!+\cdots+n \cdot n!=(n+1)!-1$ whenever n is a positive integer.
2. Prove that for every positive integer $n, \Sigma_{k=1}^{n} k 2^{k}=(n-1) 2^{n+1}+2$.
3. Suppose that a and b are real numbers with $0<b<a$. Prove that if n is a positive integer, then $a^{n}-b^{n} \leq n a^{n-1}(a-b)$.
4. Prove that 6 divides $n^{3}-n$ whenever n is a nonnegative integer.
5. Prove that if $A_{1}, A_{2}, \ldots, A_{n}$ and B are sets, then $\left(A_{1}-B\right) \cap\left(A_{2}-B\right) \cap \cdots \cap\left(A_{n}-B\right)=$ $\left(A_{1} \cap A_{2} \cap \cdots \cap A_{n}\right)-B$.
6. Show that n lines separate the plane into $\frac{n^{2}+n+2}{2}$ regions if no two of these lines are parallel and no three pass through a common point.
7. Suppose that P is a simple polygon with vertices $v_{1}, v_{2}, \ldots, v_{n}$ listed so that consecutive vertices are connected by an edge, and v_{1} and v_{n} are connected by an edge. A vertex v_{i} is called an ear if the line segment connecting the two vertices adjacent to v_{i} is an interior diagonal of the simple polygon. Two ears v_{i} and v_{j} are called nonoverlapping if the interiors of the triangles with vertices v_{i} and its two adjacent vertices and v_{j} and its two adjacent vertices do not intersect. Prove that every simple polygon with at least four vertices has at least two nonoverlapping ears.
8. Let $P(n)$ be the statement that a postage of n cents can be formed using just 4-cent stamps and 7 -cent stamps. The parts of this exercise outline a strong induction proof that $P(n)$ is true for all integers $n \geq 18$.
(a) Show that the statements $P(18), P(19), P(20)$, and $P(21)$ are true, completing the basis step of a proof by strong induction that $\mathrm{P}(\mathrm{n})$ is true for all integers $n \geq 18$.
(b) What is the inductive hypothesis of a proof by strong induction that $P(n)$ is true for all integers $n \geq 18$?
(c) What do you need to prove in the inductive step of a proof that $P(n)$ is true for all integers $n \geq 18$?
(d) Complete the inductive step for $k \geq 21$.
(e) Explain why these steps show that $P(n)$ is true for all integers $n \geq 18$.
