Math 55 Discussion problems 23 Feb

- 1. Prove that $1 \cdot 1! + 2 \cdot 2! + \cdots + n \cdot n! = (n+1)! 1$ whenever n is a positive integer.
- 2. Prove that for every positive integer n, $\sum_{k=1}^{n} k2^{k} = (n-1)2^{n+1} + 2$.
- 3. Suppose that a and b are real numbers with 0 < b < a. Prove that if n is a positive integer, then $a^n b^n \le na^{n-1}(a-b)$.
- 4. Prove that 6 divides $n^3 n$ whenever n is a nonnegative integer.
- 5. Prove that if $A_1, A_2, ..., A_n$ and B are sets, then $(A_1 B) \cap (A_2 B) \cap \cdots \cap (A_n B) = (A_1 \cap A_2 \cap \cdots \cap A_n) B$.
- 6. Show that n lines separate the plane into $\frac{n^2+n+2}{2}$ regions if no two of these lines are parallel and no three pass through a common point.
- 7. Suppose that P is a simple polygon with vertices $v_1, v_2, ..., v_n$ listed so that consecutive vertices are connected by an edge, and v_1 and v_n are connected by an edge. A vertex v_i is called an ear if the line segment connecting the two vertices adjacent to v_i is an interior diagonal of the simple polygon. Two ears v_i and v_j are called nonoverlapping if the interiors of the triangles with vertices v_i and its two adjacent vertices and v_j and its two adjacent vertices do not intersect. Prove that every simple polygon with at least four vertices has at least two nonoverlapping ears.
- 8. Let P(n) be the statement that a postage of n cents can be formed using just 4-cent stamps and 7-cent stamps. The parts of this exercise outline a strong induction proof that P(n) is true for all integers $n \ge 18$.
 - (a) Show that the statements P(18), P(19), P(20), and P(21) are true, completing the basis step of a proof by strong induction that P(n) is true for all integers $n \ge 18$.
 - (b) What is the inductive hypothesis of a proof by strong induction that P(n) is true for all integers $n \ge 18$?
 - (c) What do you need to prove in the inductive step of a proof that P(n) is true for all integers $n \ge 18$?
 - (d) Complete the inductive step for $k \ge 21$.
 - (e) Explain why these steps show that P(n) is true for all integers $n \ge 18$.